Part of the Mathematics glossary:

Probability is a branch of mathematics that deals with calculating the likelihood of a given event's occurrence, which is expressed as a number between 1 and 0. An event with a probability of 1 can be considered a certainty: for example, the probability of a coin toss resulting in either "heads" or "tails" is 1, because there are no other options, assuming the coin lands flat. An event with a probability of .5 can be considered to have equal odds of occurring or not occurring: for example, the probability of a coin toss resulting in "heads" is .5, because the toss is equally as likely to result in "tails." An event with a probability of 0 can be considered an impossibility: for example, the probability that the coin will land (flat) without either side facing up is 0, because either "heads" or "tails" must be facing up. A little paradoxical, probability theory applies precise calculations to quantify uncertain measures of random events.

Next Steps

In its simplest form, probability can be expressed mathematically as: the number of occurrences of a targeted event divided by the number of occurrences plus the number of failures of occurrences (this adds up to the total of possible outcomes):

p(a) = p(a)/[p(a) + p(b)]

Calculating probabilities in a situation like a coin toss is straightforward, because the outcomes are mutually exclusive: either one event or the other must occur. Each coin toss is an independent event; the outcome of one trial has no effect on subsequent ones. No matter how many consecutive times one side lands facing up, the probability that it will do so at the next toss is always .5 (50-50). The mistaken idea that a number of consecutive results (six "heads" for example) makes it more likely that the next toss will result in a "tails" is known as the gambler's fallacy , one that has led to the downfall of many a bettor.

Probability theory had its start in the 17th century, when two French mathematicians, Blaise Pascal and Pierre de Fermat carried on a correspondence discussing mathematical problems dealing with games of chance. Contemporary applications of probability theory run the gamut of human inquiry, and include aspects of computer programming, astrophysics, music, weather prediction, and medicine.

This was last updated in December 2005
Posted by: Margaret Rouse

Related Terms

Definitions

  • law of large numbers

    - The law of large numbers is a principle of probability according to which the frequencies of events with the same likelihood of occurrence even out, given enough trials or instances. As the number ... (WhatIs.com)

  • stochastic optimization

    - Stochastic optimization is the process of maximizing or minimizing the value of a mathematical or statistical function when one or more of the input parameters is subject to randomness. The word st... (WhatIs.com)

  • pseudo-random number generator (PRNG)

    - A pseudo-random number generator (PRNG) is a program written for, and used in, probability and statistics applications when large quantities of random digits are needed. (WhatIs.com)

Glossaries

  • Mathematics

    - Terms related to mathematics, including definitions about logic, algorithms and computations and mathematical terms used in computer science and business.

  • Computing fundamentals

    - Terms related to computer fundamentals, including computer hardware definitions and words and phrases about software, operating systems, peripherals and troubleshooting.

  • Internet applications

    - This WhatIs.com glossary contains terms related to Internet applications, including definitions about Software as a Service (SaaS) delivery models and words and phrases about web sites, e-commerce ...

Ask a Question. Find an Answer.Powered by ITKnowledgeExchange.com

Ask An IT Question

Get answers from your peers on your most technical challenges

Ask Question

Tech TalkComment

Share
Comments

    Results

    Contribute to the conversation

    All fields are required. Comments will appear at the bottom of the article.