Browse Definitions:
Definition

quantum theory

Contributor(s): Ivy Wigmore

Quantum theory is the theoretical basis of modern physics that explains the nature and behavior of matter and energy on the atomic and subatomic level. The nature and behavior of matter and energy at that level is sometimes referred to as quantum physics and quantum mechanics.

In 1900, physicist Max Planck presented his quantum theory to the German Physical Society. Planck had sought to discover the reason that radiation from a glowing body changes in color from red, to orange, and, finally, to blue as its temperature rises. He found that by making the assumption that energy existed in individual units in the same way that matter does, rather than just as a constant electromagnetic wave - as had been formerly assumed - and was therefore quantifiable, he could find the answer to his question. The existence of these units became the first assumption of quantum theory.

Planck wrote a mathematical equation involving a figure to represent these individual units of energy, which he called quanta. The equation explained the phenomenon very well; Planck found that at certain discrete temperature levels (exact multiples of a basic minimum value), energy from a glowing body will occupy different areas of the color spectrum. Planck assumed there was a theory yet to emerge from the discovery of quanta, but, in fact, their very existence implied a completely new and fundamental understanding of the laws of nature. Planck won the Nobel Prize in Physics for his theory in 1918, but developments by various scientists over a thirty-year period all contributed to the modern understanding of quantum theory.

The Development of Quantum Theory

  • In 1900, Planck made the assumption that energy was made of individual units, or quanta.
  • In 1905, Albert Einstein theorized that not just the energy, but the radiation itself was quantized in the same manner.
  • In 1924, Louis de Broglie proposed that there is no fundamental difference in the makeup and behavior of energy and matter; on the atomic and subatomic level either may behave as if made of either particles or waves. This theory became known as the principle of wave-particle duality: elementary particles of both energy and matter behave, depending on the conditions, like either particles or waves.
  • In 1927, Werner Heisenberg proposed that precise, simultaneous measurement of two complementary values - such as the position and momentum of a subatomic particle - is impossible. Contrary to the principles of classical physics, their simultaneous measurement is inescapably flawed; the more precisely one value is measured, the more flawed will be the measurement of the other value. This theory became known as the uncertainty principle, which prompted Albert Einstein's famous comment, "God does not play dice."

The Copenhagen Interpretation and the Many-Worlds Theory

The two major interpretations of quantum theory's implications for the nature of reality are the Copenhagen interpretation and the many-worlds theory. Niels Bohr proposed the Copenhagen interpretation of quantum theory, which asserts that a particle is whatever it is measured to be (for example, a wave or a particle), but that it cannot be assumed to have specific properties, or even to exist, until it is measured. In short, Bohr was saying that objective reality does not exist. This translates to a principle called superposition that claims that while we do not know what the state of any object is, it is actually in all possible states simultaneously, as long as we don't look to check.

To illustrate this theory, we can use the famous and somewhat cruel analogy of Schrodinger's Cat. First, we have a living cat and place it in a thick lead box. At this stage, there is no question that the cat is alive. We then throw in a vial of cyanide and seal the box. We do not know if the cat is alive or if the cyanide capsule has broken and the cat has died. Since we do not know, the cat is both dead and alive, according to quantum law - in a superposition of states. It is only when we break open the box and see what condition the cat is that the superposition is lost, and the cat must be either alive or dead.

The second interpretation of quantum theory is the many-worlds (or multiverse theory. It holds that as soon as a potential exists for any object to be in any state, the universe of that object transmutes into a series of parallel universes equal to the number of possible states in which that the object can exist, with each universe containing a unique single possible state of that object. Furthermore, there is a mechanism for interaction between these universes that somehow permits all states to be accessible in some way and for all possible states to be affected in some manner. Stephen Hawking and the late Richard Feynman are among the scientists who have expressed a preference for the many-worlds theory.

Quantum Theory's Influence

Although scientists throughout the past century have balked at the implications of quantum theory - Planck and Einstein among them - the theory's principles have repeatedly been supported by experimentation, even when the scientists were trying to disprove them. Quantum theory and Einstein's theory of relativity form the basis for modern physics. The principles of quantum physics are being applied in an increasing number of areas, including quantum optics, quantum chemistry, quantum computing, and quantum cryptography.

See Brian Greene's introduction to quantum theory on Nova:

This was last updated in January 2015

Continue Reading About quantum theory

Join the conversation

29 comments

Send me notifications when other members comment.

By submitting you agree to receive email from TechTarget and its partners. If you reside outside of the United States, you consent to having your personal data transferred to and processed in the United States. Privacy

Please create a username to comment.

Ummmm...... Thanks!!! I'm doing a report on this and it was really helpful...... But Einstein was never actually alive, was he? I am sorry but I think he was a fake guy:):)! Other than that, everything SEEMS right so YAAAYY for whoever made this!!!:):)
Cancel
Einstein was as real as you or me!!!!
Cancel
You have a good point both of you but in quantum theory there is a universe for both.
Cancel
Please say this is a joke.
Cancel
thx really helpful
Cancel
http://qpdb.eu/what-is-quantum-physics/
Cancel
if you THINK YTHAT EINSTEIN WASNT REAL YOU ARE AN ACTUAL DUMBASS IM SO SORRY WHO THE FUCK LET A SIXTH GRADER ON THE INTERNET HOLY FUCK. (TO THE IGNORANT COMMENT BELOW)
Cancel
A scintillating, truly remarkable segment, excellent! I'm gonna share tis with my m8 dave
Cancel
#rekt the Sixth Grader below
Cancel
The guy who thinks Einstein wasn't real is hilarious.

Was he the Robin Hood of the science world? xD
Cancel
im in year 5 dad says i get 500 bucks if i figure qm out before end of grade 6 can u help me?
Cancel
no seriously plz help ill get 500 bucks:)
Cancel
plz plz im da fith Grader PLEASE HELP btw im maddy
Cancel
maddy search quantum mechanics or quantum physics on wikepedia AND you tube it should help btw im taylor
Cancel
thx taylor
Cancel
no probs i gtg coz this is wierd bye
Cancel
EINSTIEN WAS NEVER WHAT U GOTTA SORT OUT UR KNOWLEDGE N FAST BEFORE ITS TO LATE!
Cancel
i would not get real answer pleasa answer that
question and send in e- mail katuwalkhemraj7@gmail.com
Cancel
whoever thinks Einstein is real is so stupid XD
Cancel
Does this mean that God can be everywhere?
Cancel
Is interninternet because of quantum theory
Cancel
About table of elements
http://hfilipen-talentedchildren.blogspot.com
Cancel
now here is a question the quantum theory i get but the one thing that gets me is that when it says that it knows the behavior of every matter would this mean it would cancel out the butterfly effect. the reason is this sense the butterfly effect is the theory of two choices can do massive damage in the future. the thing also that stands out here is that the butter fly effect actually supports how that there is such a thing a multiverse that is separated be decision but then would this means that what ever we do here is the opposite of what we do in other multiverses or something else. plus the butterfly effect and the multiverse also support the multiple dimensions because the thing is i was thinking that there was such the thing, but if all this supported each other then would all three of these things prove the quantum theory wrong because then would it mean that there is and infinite versions of us alive and dead but then time travel would be possible because of the choices we make makes it to where all versions of us would die in totally different places and time so would that mean that everything but the quantum theory was true or backwards?
Cancel
Quantum mechanics (QM -- also known as quantum physics, or quantum theory) is a branch of physics which deals with physical phenomena at nanoscopic scales where the action is on the order of the Planck constant. It departs from classical mechanics primarily at the quantum realm of atomic and subatomic length scales. Quantum mechanics provides a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. Quantum mechanics provides a substantially useful framework for many features of the modern periodic table of elements including the behavior of atoms during chemical bonding and has played a significant role in the development of many modern technologies.

In advanced topics of quantum mechanics, some of these behaviors are macroscopic (see macroscopic quantum phenomena) and emerge at only extreme (i.e., very low or very high) energies or temperatures (such as in the use of superconducting magnets). For example, the angular momentum of an electron bound to an atom or molecule is quantized. In contrast, the angular momentum of an unbound electron is not quantized. In the context of quantum mechanics, the wave--particle duality of energy and matter and the uncertainty principle provide a unified view of the behavior of photons, electrons, and other atomic-scale objects.

The mathematical formulations of quantum mechanics are abstract. A mathematical function, the wavefunction, provides information about the probability amplitude of position, momentum, and other physical properties of a particle. Mathematical manipulations of the wavefunction usually involve bra--ket notation which requires an understanding of complex numbers and linear functionals. The wavefunction formulation treats the particle as a quantum harmonic oscillator, and the mathematics is akin to that describing acoustic resonance. Many of the results of quantum mechanics are not easily visualized in terms of classical mechanics. For instance, in a quantum mechanical model the lowest energy state of a system, the ground state, is non-zero as opposed to a more "traditional" ground state with zero kinetic energy (all particles at rest). Instead of a traditional static, unchanging zero energy state, quantum mechanics allows for far more dynamic, chaotic possibilities, according to John Wheeler.

The earliest versions of quantum mechanics were formulated in the first decade of the 20th century. About this time, the atomic theory and the corpuscular theory of light (as updated by Einstein)[1] first came to be widely accepted as scientific fact; these latter theories can be viewed as quantum theories of matter and electromagnetic radiation, respectively. Early quantum theory was significantly reformulated in the mid-1920s by Werner Heisenberg, Max Born and Pascual Jordan, (matrix mechanics); Louis de Broglie and Erwin Schrödinger (wave mechanics); and Wolfgang Pauli and Satyendra Nath Bose (statistics of subatomic particles). Moreover, the Copenhagen interpretation of Niels Bohr became widely accepted. By 1930, quantum mechanics had been further unified and formalized by the work of David Hilbert, Paul Dirac and John von Neumann[2] with a greater emphasis placed on measurement in quantum mechanics, the statistical nature of our knowledge of reality, and philosophical speculation about the role of the observer. Quantum mechanics has since permeated throughout many aspects of 20th-century physics and other disciplines including quantum chemistry, quantum electronics, quantum optics, and quantum information science. Much 19th-century physics has been re-evaluated as the "classical limit" of quantum mechanics and its more advanced developments in terms of quantum field theory, string theory, and speculative quantum gravity theorie
Cancel
Very helpful site for the students. Thank you for sharing.
http://healthcareadministrationdegree.co/
Cancel
Very helpful site for the students. Thank you for sharing.
<a href="http://healthcareadministrationdegree.co/">Healthcare Administration</a>
Cancel
it too much for a man to comprehend but yet too simple to see. Lets just say that it is the Breath of God, in everything. Look at how far we come to identify all matter. Light is also a matter that has space and time, so as it is for dark. We will never identify or explain quantum physics unless we identify and truly understand ourselves as one. Only then will quantum physics be of no relevance than to live our life in harmony will all matter /creation.
Cancel
According to Quantum Physics whatever is there in our Universe is nothing but rays of light, the different angles of rays make things visible. But in our universe is there not a single place where light is not there but matter is prevailing. We have not explored the whole universe yet! 
Cancel
We probably never will explore the entire universe since the Doppler effect shows that every large body in the universe is moving away form each other at exponential speeds. 
Cancel

-ADS BY GOOGLE

File Extensions and File Formats

SearchCompliance

SearchSecurity

  • black hat

    Black hat refers to a hacker who breaks into a computer system or network with malicious intent.

  • copyright

    Copyright is a legal term describing ownership of control of the rights to the use and distribution of certain works of creative ...

  • keylogger (keystroke logger or system monitor)

    A keylogger, sometimes called a keystroke logger or system monitor, is a type of surveillance technology used to monitor and ...

SearchHealthIT

  • population health management (PHM)

    Population health management (PHM) is a discipline within the healthcare industry that studies and facilitates care delivery ...

  • ICD-10-PCS

    The International Classification of Diseases, 10th Revision, Procedure Coding System (ICD-10-PCS) is a U.S. cataloging system for...

  • U.S. National Library of Medicine (NLM)

    The U.S. National Library of Medicine (NLM) is the largest biomedical library in the world.

SearchDisasterRecovery

  • business continuity plan (BCP)

    A business continuity plan (BCP) is a document that consists of the critical information an organization needs to continue ...

  • call tree

    A call tree -- sometimes referred to as a phone tree -- is a telecommunications chain for notifying specific individuals of an ...

  • mass notification system (MNS)

    A mass notification system is a platform that sends one-way messages to inform employees and the public of an emergency.

SearchStorage

  • hybrid hard drive (HHD)

    A hybrid hard drive (HHD), sometimes known as a solid-state hybrid drive (SSHD), is a mass storage device that combines a ...

  • USB flash drive

    A USB flash drive -- also known as a stick, thumb or pen drive -- is a plug-and-play portable storage device that uses flash ...

  • open source storage

    Open source storage is data storage software developed in a public, collaborative manner that permits the free use, distribution ...

SearchSolidStateStorage

  • RRAM or ReRAM (resistive RAM)

    RRAM or ReRAM (resistive random access memory) is a form of nonvolatile storage that operates by changing the resistance of a ...

  • JEDEC

    JEDEC is a global industry group that develops open standards for microelectronics.

  • M.2 SSD

    An M.2 SSD is a solid-state drive (SSD) that conforms to a computer industry specification written for internally mounted storage...

SearchCloudStorage

  • RESTful API

    A RESTful application program interface breaks down a transaction to create a series of small modules, each of which addresses an...

  • cloud storage infrastructure

    Cloud storage infrastructure is the hardware and software framework that supports the computing requirements of a private or ...

  • Zadara VPSA and ZIOS

    Zadara Storage provides block, file or object storage with varying levels of compute and capacity through its ZIOS and VPSA ...

Close