Browse Definitions:
Definition

scientific notation (power-of-10 notation)

Scientific notation, also called power-of-10 notation, is a method of writing extremely large and small numbers. There are two forms of this scheme; one is by far more common.

In common scientific notation, any nonzero quantity can be expressed in two parts: a coefficient whose absolute value is greater than or equal to 1 but less than 10, and a power of 10 by which the coefficient is multiplied. In some writings, the coefficients are closer to zero by one order of magnitude. In this scheme, any nonzero quantity is expressed in two parts: a coefficient whose absolute value is greater than or equal to 0.1 but less than 1, and a power of 10 by which the coefficient is multiplied. The quantity zero is denoted as 0 unless precision is demanded, in which case the requisite number of significant digits are written out -- for example, 0.00000.

For numbers of reasonable magnitude, conventional decimal notation is often used, even in scientific writings. Let s be a number rounded or truncated to a few significant figures. If the absolute value of s is at least 0.001 (10 -3 ) but less than 10,000 (10 4 ), then s is usually written out in full. Examples are 21.3389 and -0.002355. However, if the absolute value of s is smaller than 0.001 or if it is 10,000 or larger, scientific notation is usually preferred, because writing such numbers out in decimal form can be confusing and messy. This is especially true when the absolute value of s is very close to zero or is exceedingly large. It is inconvenient, for example, to write out either of the expressions 6.0205 x 10 74 or -0.64453 x 10 -45 in decimal form.

The table shows several examples of numbers written in standard decimal notation (left-hand column) and in scientific notation (right-hand column). For negative numbers, the values are simply mirror-image positive numbers; a minus sign is placed in front of the values. The number of digits in the coefficient is the number of significant figures. Note that an expression can have various degrees of precision; the greater the number of significant figures, the greater the precision.

Number in decimal form Examples in scientific notation
1,222,000.00 1.222 x 10 6
1.22200000 x 10 6
0.1222 x 10 7
0.122200000 x 10 7
0.00003450000 3.45 x 10 -5
3.450000 x 10 -5
0.345 x 10 -4
0.3450000 x 10 -4
-9,876,543,210 -9.87654 x 10 9 (approximately)
-9.876543210 x 10 9 (exactly)
-0.987654 x 10 10 (approximately)
-0.9876543210 x 10 10 (exactly)
-0.0000000100 -10 -8
-1.00 x 10 -8
-0.1 x 10 -7
-0.100 x 10 -7

Scientific notation makes it easy to multiply and divide gigantic and/or minuscule numbers, when the use of decimal notation would give rise to frustration. Consider, for example, the following product:

2.56 x 10 67 x -8.33 x 10 -54

To obtain the product of these two numbers, the coefficients are multiplied, and the powers of 10 are added. This produces the following result:

2.56 x (-8.33) x 10 67+(-54)
= 2.56 x (-8.33) x 10 67-54
= -21.3248 x 10 13

The proper form of common scientific notation requires that the absolute value of the coefficient be larger than 1 and less than 10. Thus, the coefficient in the above expression should be divided by 10 and the power of 10 increased by one, giving:

-2.13248 x 10 14

Because both multiplicands in the original product are specified to only three significant figures, a scientist might see fit to round off the final expression to three significant figures as well, yielding:

-2.13 x 10 14

as the product.

Now consider the quotient of the two numbers multiplied in the previous example:

(2.56 x 10 67 ) / (-8.33 x 10 -54 )

To obtain the quotient, the coefficients are divided, and the powers of 10 are subtracted. This gives the following:

(2.56 / (-8.33)) x 10 67-(-54)
= (2.56 / (-8.33)) x 10 67+54
= -0.30732 x 10 121

The proper form of common scientific notation requires that the absolute value of the coefficient be larger than 1 and less than 10. Thus, the coefficient in the above expression should be multiplied by 10 and the power of 10 decreased by one, giving:

-3.0732 x 10 120

Because both numbers in the original quotient are specified to only three significant figures, a scientist might see fit to round off the final expression to three significant figures as well, yielding:

-3.07 x 10 120

as the quotient.

Also see order of magnitude and significant figures .

This was last updated in March 2011

Continue Reading About scientific notation (power-of-10 notation)

Join the conversation

6 comments

Send me notifications when other members comment.

By submitting you agree to receive email from TechTarget and its partners. If you reside outside of the United States, you consent to having your personal data transferred to and processed in the United States. Privacy

Please create a username to comment.

what is the formula of scientific notation
Cancel
is very important learning
Cancel
the value of 3 to the 36th power, what is the answer?
Cancel
What is the scientific notation and numerals 5*103 do you know
Cancel
Hi,
There is no mention of decimal exponants.
How to write in decimal notation a number like 10E9.9 or 1.23x10E9.9 ?
Thanks in advance for your light
Cancel
2,500
Cancel

-ADS BY GOOGLE

File Extensions and File Formats

Powered by:

SearchCompliance

  • internal audit (IA)

    An internal audit (IA) is an organizational initiative to monitor and analyze its own business operations in order to determine ...

  • pure risk (absolute risk)

    Pure risk, also called absolute risk, is a category of threat that is beyond human control and has only one possible outcome if ...

  • risk assessment

    Risk assessment is the identification of hazards that could negatively impact an organization's ability to conduct business.

SearchSecurity

  • computer exploit

    A computer exploit, or exploit, is an attack on a computer system, especially one that takes advantage of a particular ...

  • cyberwarfare

    Cyberwarfare is computer- or network-based conflict involving politically motivated attacks by a nation-state on another ...

  • insider threat

    Insider threat is a generic term for a threat to an organization's security or data that comes from within.

SearchHealthIT

SearchDisasterRecovery

  • business continuity and disaster recovery (BCDR)

    Business continuity and disaster recovery (BCDR) are closely related practices that describe an organization's preparation for ...

  • business continuity plan (BCP)

    A business continuity plan (BCP) is a document that consists of the critical information an organization needs to continue ...

  • call tree

    A call tree -- sometimes referred to as a phone tree -- is a telecommunications chain for notifying specific individuals of an ...

SearchStorage

  • OpenStack Block Storage (Cinder)

    OpenStack Block Storage (Cinder) is open source software designed to create and manage a service that provides persistent data ...

  • SATA Express (SATAe)

    SATA Express (SATAe or Serial ATA Express) is a bus interface to connect storage devices to a computer motherboard, supporting ...

  • DIMM (dual in-line memory module)

    A DIMM (dual in-line memory module) is the standard memory card used in servers and PCs.

SearchSolidStateStorage

  • hybrid flash array

    A hybrid flash array is a solid-state storage system that contains a mix of flash memory drives and hard disk drives.

  • 3D XPoint

    3D XPoint is memory storage technology jointly developed by Intel and Micron Technology Inc.

  • RRAM or ReRAM (resistive RAM)

    RRAM or ReRAM (resistive random access memory) is a form of nonvolatile storage that operates by changing the resistance of a ...

SearchCloudStorage

  • Google Cloud Storage

    Google Cloud Storage is an enterprise public cloud storage platform that can house large unstructured data sets.

  • RESTful API

    A RESTful application program interface breaks down a transaction to create a series of small modules, each of which addresses an...

  • cloud storage infrastructure

    Cloud storage infrastructure is the hardware and software framework that supports the computing requirements of a private or ...

Close