Browse Definitions :
Definition

active learning (active learner algorithm)

Active learning, in an AI context, is the capacity of a machine learning (ML) algorithm to query a human source for additional information. Essentially, active learning allows a minimally-trained AI program to identify what data it needs to become better. The algorithm identifies which subset of data it expects to yield the best results for a particular category and requests that someone label the data in that subset.

Active learning algorithms require minimal training data, which makes them especially helpful when there’s not a lot of labeled data available. This makes this type of algorithm useful for information retrieval and text analysis -- as well as image and speech recognition.

Active learning vs. supervised learning vs. unsupervised learning

Active learning algorithms are a simple form of semi-supervised, curious AI. This type of algorithm combines aspects of both supervised learning and unsupervised learning.

Supervised ML, which uses historic data to make forecasts about new data, requires a human to create input and desired-output data for training. Because this approach requires a lot of human overhead, it can be expensive. In contrast, AI systems that use unsupervised learning require very little human overhead because the algorithms simply look for patterns in unlabeled datasets. While this type of ML can be cost-effective because it does not require as much human input, it can also be difficult to quantify the results as being meaningful.

Active learning can use both structured and unstructured data in a cost-efficient manner by prioritizing which data the model is most confused about and requesting labels for just that data. The model will use a relatively small amount of labeled data for training and request more labels later on if needed. This iterative approach to machine learning not only helps the machine learning model learn faster, it also keeps costs down by letting humans skip labeling data that isn't helpful to the model.

This was last updated in December 2019

Continue Reading About active learning (active learner algorithm)

SearchCompliance
  • pure risk

    Pure risk refers to risks that are beyond human control and result in a loss or no loss with no possibility of financial gain.

  • risk reporting

    Risk reporting is a method of identifying risks tied to or potentially impacting an organization's business processes.

  • risk exposure

    Risk exposure is the quantified potential loss from business activities currently underway or planned.

SearchSecurity
  • script kiddie

    Script kiddie is a derogative term that computer hackers coined to refer to immature, but often just as dangerous, exploiters of ...

  • cipher

    In cryptography, a cipher is an algorithm for encrypting and decrypting data.

  • What is risk analysis?

    Risk analysis is the process of identifying and analyzing potential issues that could negatively impact key business initiatives ...

SearchHealthIT
SearchDisasterRecovery
  • What is risk mitigation?

    Risk mitigation is a strategy to prepare for and lessen the effects of threats faced by a business.

  • fault-tolerant

    Fault-tolerant technology is a capability of a computer system, electronic system or network to deliver uninterrupted service, ...

  • synchronous replication

    Synchronous replication is the process of copying data over a storage area network, local area network or wide area network so ...

SearchStorage
  • gigabyte (GB)

    A gigabyte (GB) -- pronounced with two hard Gs -- is a unit of data storage capacity that is roughly equivalent to 1 billion ...

  • MRAM (magnetoresistive random access memory)

    MRAM (magnetoresistive random access memory) is a method of storing data bits using magnetic states instead of the electrical ...

  • storage volume

    A storage volume is an identifiable unit of data storage. It can be a removable hard disk, but it does not have to be a unit that...

Close