Browse Definitions :
Definition

collaborative filtering

Collaborative filtering is the predictive process behind recommendation engines. Recommendation engines analyze information about users with similar tastes to assess the probability that a target individual will enjoy something, such as a video, a book or a product. Collaborative filtering is also known as social filtering.

Collaborative filtering uses algorithms to filter data from user reviews to make personalized recommendations for users with similar preferences. Collaborative filtering is also used to select content and advertising for individuals on social media.

Three types of collaborative filtering commonly used in recommendation systems are neighbor-based, item-to-item and classification- based.

In neighbor-based filtering, users are selected for their similarity to the active user. This similarity is determined by matching users who have posted similar reviews. Based on the previous similarity, it is presumed that future likes and dislikes will also be similar. From the average rating of the group, recommendations are made for the active user.

An item-to-item filtering process uses a matrix to determine the likeness of pairs of items. Item-to-item processes then compare the current user’s preference to the items in the matrix for similarities upon which to base recommendations.

 A classification-based collaborative filtering system recommends things based on how similar users liked that classification or genre. It is assumed that users that enjoy or dislike similar experiences within a classification will also enjoy others within that classification.

Some collaborative filtering systems are memory-based, like neighboring- and item-to-item models, which compare similarities of users or items. Others are model-based, using machine learning to compare dissimilar items. Model-based systems may use algorithms such as the Markov decision process to predict ratings for items that have not yet been reviewed. Hybrid systems include features of both memory-based and model-based filtering.

Recommendation systems are used to provide suggestions for all kinds of websites and services. Still, they can encounter a number of difficulties.  The sparsity of ratings is one of the main hurdles to collaborative filtering’s usefulness in systems with many items. New items also tend to be difficult to provide recommendations for. Under new recommendation systems, it is hard to provide good recommendations before enough users have entered reviews. At the same time, however, too many user ratings can be challenging to some systems because they make for huge data sets.

This was last updated in August 2017

Continue Reading About collaborative filtering

SearchCompliance
  • OPSEC (operations security)

    OPSEC (operations security) is a security and risk management process and strategy that classifies information, then determines ...

  • smart contract

    A smart contract is a decentralized application that executes business logic in response to events.

  • compliance risk

    Compliance risk is an organization's potential exposure to legal penalties, financial forfeiture and material loss, resulting ...

SearchSecurity
SearchHealthIT
SearchDisasterRecovery
  • What is risk mitigation?

    Risk mitigation is a strategy to prepare for and lessen the effects of threats faced by a business.

  • change control

    Change control is a systematic approach to managing all changes made to a product or system.

  • disaster recovery (DR)

    Disaster recovery (DR) is an organization's ability to respond to and recover from an event that affects business operations.

SearchStorage
  • VRAM (video RAM)

    VRAM (video RAM) refers to any type of random access memory (RAM) specifically used to store image data for a computer display.

  • PCIe SSD (PCIe solid-state drive)

    A PCIe SSD (PCIe solid-state drive) is a high-speed expansion card that attaches a computer to its peripherals.

  • virtual memory

    Virtual memory is a memory management technique where secondary memory can be used as if it were a part of the main memory.

Close