Browse Definitions :
Definition

graph analytics

Graph analytics is a category of tools used to apply algorithms that will help the analyst understand the relationship between graph database entries.

The structure of a graph is made up of nodes (also known as vertices) and edges. Nodes denote points in the graph data. For example, accounts, customers, devices, groups of people, organizations, products or locations may all be represented as a node. Edges symbolize the relationships, or lines of communication, between nodes. Every edge can have a direction, either one-way or bidirectional, and a weight, to depict the strength of the relationship.

Once the graph database is constructed, analytics can be applied. The algorithms can be used to identify values or uncover insights within the data such as the average path length between nodes, nodes that might be outliers and nodes with dominant activity. It can also be used to arrange the data in new ways such as partitioning information into sections for individual analysis or searching for nodes that meet specific criteria.

Some common tools used to create graph analytics include Apache Spark GraphX, IBM Graph, Gradoop, Google Charts, Cytoscape and Gephi.

Types of graph analytics

There are four main types of analytics that can be applied to graphs:

  1. Path analysis- This focuses on the relationships between two nodes in a graph. This type of graph analytics can help identify the shortest path between nodes, find the widest path between weighted nodes and calculate a spanning tree around a center point.
  2. Connectivity analysis- This focuses on the weight of the edges between nodes. It can be applied to identify weaknesses in a system or anomalies such as abnormally high or low activity.
  3. Community analysis- This focuses on the interactions between nodes. It clusters nodes into labeled groups of similar objects to help with organization.
  4. Centrality analysis- This focuses on the relevancy of each node in a graph. It can be used to rank popularity or influence between nodes.

Examples of applications for graph analytics

Graph analytics can be used for a variety of applications, such as:

  • Detecting cybercrimes such as money laundering, identity fraud and cyberterrorism.
  • Applying analysis to social networks and communities such as monitoring statistics and identifying influencers.
  • Performing analysis on the traffic and quality of service for computer networks.
  • Optimizing logistics for manufacturing and transportation industries.
  • Determining page rank analytics and tracking their popularity or amount of clicks.
  • Analyzing the parts of a software application and how they interact to find potential issues.
This was last updated in July 2019

Continue Reading About graph analytics

SearchCompliance

  • information governance

    Information governance is a holistic approach to managing corporate information by implementing processes, roles, controls and ...

  • enterprise document management (EDM)

    Enterprise document management (EDM) is a strategy for overseeing an organization's paper and electronic documents so they can be...

  • risk assessment

    Risk assessment is the identification of hazards that could negatively impact an organization's ability to conduct business.

SearchSecurity

  • cyber espionage

    Cyber espionage, also called cyber spying, is a form of cyber attack that is carried out against a competitive company or ...

  • virus (computer virus)

    A computer virus is malicious code that replicates by copying itself to another program, computer boot sector or document and ...

  • spam trap

    A spam trap is an email address that is used to identify and monitor spam email.

SearchHealthIT

SearchDisasterRecovery

  • risk mitigation

    Risk mitigation is a strategy to prepare for and lessen the effects of threats faced by a business.

  • call tree

    A call tree is a layered hierarchical communication model that is used to notify specific individuals of an event and coordinate ...

  • Disaster Recovery as a Service (DRaaS)

    Disaster recovery as a service (DRaaS) is the replication and hosting of physical or virtual servers by a third party to provide ...

SearchStorage

  • dropout

    Dropout refers to data, or noise, that's intentionally dropped from a neural network to improve processing and time to results.

  • cloud storage

    Cloud storage is a service model in which data is transmitted and stored on remote storage systems, where it is maintained, ...

  • cloud testing

    Cloud testing is the process of using the cloud computing resources of a third-party service provider to test software ...

Close