proper subset symbol
The proper subset symbol indicates a specific relationship between two set s. The symbol looks like the uppercase letter U in a sans-serif font , rotated 90 degrees clockwise. Proper-subset relations form the foundation of mathematical logic, including Boolean algebra, which is important in the design of computers and signal-processing systems.
Suppose there are two sets A and B. The statement "Set A is a proper subset of set B" is written A B. This means that every element contained in set A is also contained in set B, and there is at least one element in B that is not contained in A. Thus, no set is a proper subset of itself.
Here are some examples of true statements using the proper subset symbol:
{1, 2, 3, 4, 5, ... } {0, 1, 2, 3, 4, ...}
{0, 1, 2, 3, 4} {0, 1, 2, 3, 4, ...}
{-2, -3, 4} {-2,-2.5, -3, -3.5, -4}
The following statements, however, are not true:
{0, 1, 2, 3, 4, ...} {0, 1, 2, 3, 4, ...}
{0, 1, 2, 3, 4, ...} {0, -1, -2, -3, -4, ...}
{0, 1, 2, 3, 4, ...} {0, 1, 2, 3, 4}
Sets can contain things other than numbers. Examples are points on a plane, points on a spherical surface, and points in three-dimensional (3D) space. Proper subset relationships can be expressed in terms of specialized illustrations called Venn diagram s. In the illustration below, A B, and C
B. However, it is not true that B
A, nor is it true that A
C, nor is it true that B
C. In addition, the following statements are false: A
A, B
B, and C
C.
![]() |
Compare subset symbol . Also see set theory and Mathematical Symbols .
Start the conversation
0 comments